Synthesis and X-ray Crystal Structure of (OsO₃F₂)₂.2XeOF₄ and the Raman Spectra of (OsO3F2)∞**, (OsO3F2)2, and (OsO3F2)2·2XeOF4**

Michael J. Hughes, Hélène P. A. Mercier, and Gary J. Schrobilgen^{*}

*Department of Chemistry, McMaster Uni*V*ersity, Hamilton, Ontario, L8S 4M1, Canada*

Received February 5, 2009

The adduct, $(OSO_3F_2)_2$ ·2XeOF₄, was synthesized by dissolution of the infinite chain polymer, $(OSO_3F_2)_{\sim}$, in XeOF₄ solvent at room temperature followed by removal of excess XeOF₄ under dynamic vacuum at 0 °C. Continued pumping at 0 °C resulted in removal of associated XeOF₄, yielding $(OsO₃F₂)₂$, a new low-temperature phase of OsO₃F₂. Upon standing at 25 °C for 1¹/₂ h, (OsO₃F₂)₂ underwent a phase transition to the known monoclinic phase, (OsO₃F₂)_∞. The title compounds, (OsO₃F₂)_∞, (OsO₃F₂)₂, and (OsO₃F₂)₂·2XeOF₄ have been characterized by low-temperature (-150 °C) Raman spectroscopy. Crystallization of $(OSO_3F_2)_2$ -2XeOF₄ from XeOF₄ solution at 0 °C yielded crystals suitable for X-ray structure determination. The structural unit contains the $(OsO₃F₂)₂$ dimer in which the OsO₃F₃ units are joined by two Os---F---Os bridges having fluorine bridge atoms that are equidistant from the osmium centers (2.117(5) and 2.107(4) Å). The dimer coordinates to two XeOF₄ molecules through Os- $F \cdots Xe$ bridges in which the Xe \cdots F distances (2.757(5) Å) are significantly less than the sum of the Xe and F van der Waals radii (3.63 Å). The (OsO₃F₂)₂ dimer has *C_i* symmetry in which each pseudo-octahedral OsO₃F₃ unit has a facial arrangement of oxygen ligands with $XeOF₄$ molecules that are only slightly distorted from their gasphase *C*4*^v* symmetry. Quantum-chemical calculations using SVWN and B3LYP methods were employed to calculate the gas-phase geometries, natural bond orbital analyses, and vibrational frequencies of $(OSO_3F_2)_2$, $(OSO_3F_2)_2$. $2XeOF_4$, XeOF₄, OsO₂F₄, and $(\mu$ -FOsO₃F₂)₂OsO₃F⁻ to aid in the assignment of the experimental vibrational frequencies of $(OSO_3F_2)_2$, $(OSO_3F_2)_2$: $2XeOF_4$, and $(OSO_3F_2)_{\infty}$. The vibrational modes of the low-temperature polymeric phase, (OsO₃F₂)_∞, have been assigned by comparison with the calculated frequencies of (*µ*-FOsO₃F₂)₂OsO₃F⁻, providing more complete and reliable assignments than were previously available.

Introduction

Polymeric $(OsO₃F₂)_{\infty}$ was first synthesized in 1957 by reaction of $OsO₄$ with $BrF₃$ ¹. Only the melting point and elemental analyses were, however, reported. Three distinct phases of $(OsO₃F₂)_{\infty}$ were subsequently identified by X-ray powder diffraction: a low-temperature $(\leq 90 \degree C)$ α -phase (monoclinic), a β -phase (orthorhombic) at intermediate temperatures (90-¹³⁰ °C), and a *^γ*-phase (orthorhombic) at high temperatures (>130 °C).² Single crystals of $OsO₃F₂$ were obtained by sublimation under static vacuum at 130 °C in a sapphire tube, which resulted in the X-ray crystal structure determination of the low-temperature monoclinic phase (space group $P2_1/c$).³ The structure consists of an infinite chain in which the pseudo-octahedral Os(VIII) atoms are bridged by fluorine atoms that are trans to oxygen atoms and the three oxygen atoms are in a facial arrangement.

The vibrational characterization of $OsO₃F₂$ has also been carried out for both the matrix-isolated monomer and $(OsO₃F₂)_∞$. The infrared^{4,5} and Raman⁵ spectra of monomeric $OsO₃F₂$, obtained in both argon and nitrogen matrices at 12 K, are consistent with a trigonal bipyramidal geometry (*D*3*^h* symmetry) in which the three oxygen atoms lie in the equatorial plane and the fluorine atoms are in axial positions. Although incompletely assigned, the Raman spectra^{2,6,7} of solid $OsO₃F₂$ are consistent

Inorganic:Chemistr

To whom correspondence should be addressed. E-mail: schrobil@mcmaster.ca.

⁽¹⁾ Hepworth, M. A.; Robinson, P. L. *J. Inorg. Nucl. Chem.* **1957**, *4*, 24–29.

⁽²⁾ Nghi, N.; Bartlett, N. *C. R. Acad. Sci.* **1969**, *269*, 756–759.

⁽³⁾ Bougon, R.; Buu, B.; Seppelt, K. *Chem. Ber.* **1993**, *126*, 1331–1336.

⁽⁴⁾ Hope, E. G.; Levason, W.; Ogden, J. S. *J. Chem. Soc., Dalton Trans.*

¹⁹⁸⁸, 61–65. (5) Beattie, I. R.; Blayden, H. E.; Crocombe, R. A.; Jones, P. J.; Ogden, J. S. *J. Raman Spectrosc.* **1976**, *4*, 313–322.

Synthesis and X-ray Crystal Structure of $(OsO₃F₂)₂·2XeOF₄$

with the low-temperature fluorine-bridged polymeric structure obtained from the single-crystal X-ray structure.³

The present paper details the syntheses and structural characterizations by Raman spectroscopy of a new lowtemperature phase of $OsO₃F₂$, namely $(OsO₃F₂)₂$, and its $XeOF_4$ adduct, $(OsO_3F_2)_2$ ² $XeOF_4$, which has also been characterized by single-crystal X-ray diffraction. The Raman spectrum of the low-temperature monoclinic α -phase, $(OsO₃F₂)_∞$, and its assignments are also reported.

Results and Discussion

Syntheses of $(OsO_3F_2)_2$ **²XeOF₄ and** $(OsO_3F_2)_2$ **.** Polymeric $OsO₃F₂$ slowly dissolved in XeOF₄ at room temperature forming a deep orange solution. The 19F NMR spectrum at 30 °C consisted of an exchange-broadened XeOF₄ solvent line $[\delta^{(19)}F] = 96.0$ ppm, $\Delta \nu_{1/2} = 1800$ Hz] and trace amounts
of *cis*-OsO-E. $[\delta^{(19)}F] = 68.8$ ppm (t) and 18.5 ppm(t) of *cis*-OsO₂F₄ [δ (¹⁹F) = 68.8 ppm (t) and 18.5 ppm(t),

²*I*(¹⁹E-¹⁹E) = 138 Hz)] and XeO₂E₂ [δ (¹⁹E) = 107.2 ppm $J(^{19}F-^{19}F) = 138$ Hz)] and XeO_2F_2 [$\delta(^{19}F) = 107.2$ ppm,
 $\Delta v_L = 521$ Hz). Fluorine-19 exchange between OsO-E, and $\Delta v_{12} = 521$ Hz]. Fluorine-19 exchange between OsO₃F₂ and Xe OE₃ solvent not only resulted in broadening of the Xe OE₃ $XeOF_4$ solvent not only resulted in broadening of the $XeOF_4$ solvent line but also prevented observation of the fluorineon-osmium environments of the solute and the 129Xe satellites of the solvent and of $XeO₂F₂$. The formation of trace amounts of cis -OsO₂F₄ and $XeO₂F₂$ resulted from oxygen/fluorine metathesis between $(OsO₃F₂)_{\infty}$ and XeOF₄ solvent (eq 1).

$$
\frac{1}{\infty} (OsO_3F_2)_{\infty} + XeOF_4 \frac{XeOF_4}{30 \text{ °C}} OsO_2F_4 + XeO_2F_2 (1)
$$

The sample composition was also monitored at intervals $\frac{1}{\infty}$ (OsO₃F₂)_∞ + XeOF₄ $\frac{XeOF_4}{30 \text{ °C}}$ OsO₂F₄ + XeO₂F₂ (1)
The sample composition was also monitored at intervals
by Raman spectroscopy as XeOF₄ was removed under dynamic vacuum at 0 °C (Table S1). The Raman spectrum of the initial frozen solution was comprised of bands that arose from a mixture of $XeOF_4$ and $(OsO₃F₂)₂·2XeOF_4$. Removal of excess XeOF4 at 0 °C yielded an orange solid corresponding to $(OsO₃F₂)₂$ ²(2XeOF₄ (eq 2).

$$
\frac{2}{\infty} \left(\text{OsO}_3 \text{F}_2 \right)_{\infty} + 2 \text{XeOF}_4 \frac{\text{XeOF}_4}{25 \text{ °C}} \left(\text{OsO}_3 \text{F}_2 \right)_2 \cdot 2 \text{XeOF}_4 \quad (2)
$$

 $\frac{2}{\infty}$ (OsO₃F₂)_∞ + 2XeOF₄ $\frac{XeOF_4}{25 \text{ °C}}$ (OsO₃F₂)₂·2XeOF₄ (2)
Slow cooling of a solution of (OsO₃F₂)₂·2XeOF₄ in XeOF₄
from 25 to 0 °C resulted in light orange needle-shaped from 25 to 0 °C resulted in light orange needle-shaped crystals of $(OsO₃F₂)₂$ ²2XeOF₄ which were characterized by single-crystal X-ray diffraction (vide infra) and which had a Raman spectrum identical to that of the bulk compound. The $(OsO₃F₂)₂$ ² $XeOF₄$ adduct was stable at 25 °C for up to 5 h, after which time dissociation to $(OsO₃F₂)_{\infty}$ and XeOF₄ (eq 3) was detectable by Raman spectroscopy. Upon further

$$
(OsO_3F_2)_2 \cdot 2XeOF_4 \xrightarrow{25 \text{ °C}} \frac{2}{\infty} (OsO_3F_2)_{\infty} + 2XeOF_4 \quad (3)
$$

pumping under dynamic vacuum at 0 °C,
$$
(OsO_3F_2)_2 \cdot 2XeOF_4
$$

slowly lost XeOF, to give a yellow powder correspond-

slowly lost $XeOF_4$ to give a yellow powder corresponding to $(\text{OsO}_3\text{F}_2)_2$ (eq 4), which was confirmed by Raman

Table 1. Summary of Crystal Data and Refinement Results for $(OsO₃F₂)₂·2XeOF₄$

chem formula	$Os_2O_8F_1$ ₂ Xe ₂
space group	$P\overline{1}$ (2)
a(A)	5.0808(6)
$b(\AA)$	7.7446(9)
c(A)	9.2133(11)
α (deg)	80.012(4)
β (deg)	83.659(4)
γ (deg)	89.217(4)
$V(\AA^3)$	354.8(1)
molecules/unit cell	
mol wt (g mol ⁻¹)	999.00
calcd density (g cm^{-3})	24.675
$T({}^{\circ}C)$	-173
μ (mm ⁻¹)	22.76
R_i^a	0.0408
wR_2^b	0.0988

 ${}^a R_1$ is defined as $\Sigma ||F_0| - |F_c||/\Sigma |F_0|$ for $I > 2\sigma(I)$. *b wR*₂ is defined as ${\sum[w(F_0^2 - F_c^2)^2]/\sum w(F_0^2)^2}$ ^{1/2} for $I > 2\sigma(I)$.

$$
(OsO3F2)2 \cdot 2XeOF4 \xrightarrow{vac} (OsO3F2)2 + 2XeOF4 (4)
$$

spectroscopy (Table S1). Raman spectroscopy established

that the dimer was stable indefinitely at 0 °C, but transformed over a period of 2 h at 25 °C to an orange powder corresponding to the monoclinic polymeric phase, $(\text{OsO}_3\text{F}_2)_{\infty}$ (eq $5)^2$).

$$
\infty(\text{OsO}_3\text{F}_2)_2 \xrightarrow{\text{25 }^\circ \text{C}} 2(\text{OsO}_3\text{F}_2)_\infty \tag{5}
$$

 ∞ (OsO₃F₂)₂^{25 °C} 2(OsO₃F₂)_∞ (5)
 **X-ray Crystal Structure of (OsO₃F₂)₂·2XeOF₄. Details

data collection parameters and other crystallographic** of data collection parameters and other crystallographic information are provided in Table 1. Bond lengths and bond angles are listed in Table 2.

The structure consists of $(OsO₃F₂)₂·2XeOF₄$ units that are stacked along the *a*-axis but alternate along the *b*- and *c*-axes so that the $XeOF_4$ and OsO_3F_2 molecules face one another in adjacent columns parallel to these axes (Figure S1). The resulting intermolecular contacts are long and are near the sums of the van der Waals radii.^{8,9} The OsO₃F₂ molecules are bridged to one another through two fluorine atoms, F(1) and F(1A), that are formally contributed by each $OsO₃F₂$ molecule. The remaining fluorine ligand of each $OsO₃F₂$ unit bridges through xenon to a XeOF4 molecule (Figure 1a). The primary coordination spheres of the osmium atoms consist of three oxygen and three fluorine atoms in a facial arrangement, providing a distorted octahedral environment around osmium (Figure 1b). The preference for the *fac*-trioxo structure has been previously discussed for other $d⁰$ transition metal trioxo species such as $\left(\text{OsO}_3\text{F}_2\right)_{\infty}$,³ Os $\text{O}_3\text{F}_3^{-10}$ [Os O_3F]-

⁽⁶⁾ Falconer, W. E.; Disalvo, F. J.; Griffiths, J. E.; Stevie, F. A.; Sunder, W. A.; Vasile, M. J. *J. Fluorine Chem.* **1975**, *6*, 499–520.

⁽⁷⁾ Beattie, I. R.; Livingston, K. M. S.; Reynolds, D. J.; Ozin, G. A. *J. Chem. Soc. A* **1970**, 1210–1216.

⁽⁸⁾ Bondi, A. *J. Phys. Chem.* **1964**, *68*, 441–451.

⁽⁹⁾ The ranges of long contacts in $(OsO₃F₂)₂2XeOF₄$ are F(6) \cdots F(5A) $(2.903(8)$ Å) to F(1)···F(5B) (3.135(7) Å); F(6)···O(3C) (2.810(8) Å) to F(6)···O(4D) (3.155(8) Å); O(2)···O(4E) (2.954(9) Å) to $O(2) \cdots O(3A) (3.168(8)$ Å); $Xe(1) \cdots F(4F) (3.545(6)$ Å) to $Xe(1) \cdots F(5A)$ O(2)···O(3A) (3.168(8) Å); Xe(1)···F(4F) (3.545(6) Å) to Xe(1)···F(5A)
(3.684(5) Å) · and Xe(1)···O(3C) (3.715(6) Å) to Xe(1)···O(2F) $(3.684(5)$ Å); and $Xe(1) \cdots O(3C)$ $(3.715(6)$ Å) to $Xe(1) \cdots O(2F)$
 $(3.720(6)$ Å) The corresponding sums of the van der Waals radii (taken (3.720(6) Å). The corresponding sums of the van der Waals radii (taken from ref 8) are $F^{\bullet}F$ (2.94 Å), $F^{\bullet}O$ (2.99 Å), $O^{\bullet}O$ (3.04 Å), $Xe \rightarrow F (3.63 \text{ Å})$ and $Xe \rightarrow O (3.68 \text{ Å}).$

⁽¹⁰⁾ Gerken, M.; Dixon, D. A.; Schrobilgen, G. J. *Inorg. Chem.* **2000**, *39*, 4244–4255.

Table 2. Experimental and Calculated Geometrical Parameters for $(OSO_3F_2)_2$? XeOF₄ and Calculated Geometrical Parameters for $(OSO_3F_2)_2$, XeOF₄, and $(OsO₃F₂)₂·2XeOF₄$

$(OsO_3F_2)_2$ -2XeOF ₄						$(OsO3F2)2$		XeOF ₄			
		calcd $(C_i)^b$			calcd (C_{2h})		calcd (C_{4v})				
$exptl^a$			$SVMN^c$	B3LYP ^d	$SVMN^c$	B3LYP ^d	SVMN ^c	B3LYP ^e			
Bond Lengths (Å)											
$Os(1) - O(1)$	1.703(6)	$Os-O1$	1.721	1.688	1.715	1.689					
$Os(1)-O(2)$	1.684(6)	$Os-O2$	1.703	1.683	1.709	1.686					
$Os(1)-O(3)$	1.685(6)	$Os-O3$	1.704	1.683	1.709	1.686					
$Os(1) -- F(1)$	2.117(5)	$Os--F_1$	2.146	2.147	2.114	2.152					
Os(1) – F(2)	1.927(5)	$Os-F_2$	1.915	1.921	1.892	1.892					
$Os(1) -- F(1A)$	2.107(4)	$Os--F1$	2.093	2.143	2.114	2.152					
$Xe(1)\cdots F(2)$	2.757(5)	$Xe \cdots F_2$	2.735	2.968							
$Xe(1)-O(4)$	1.709(6)	$Xe-O4$	1.750	1.742			1.749	1.742			
$Xe(1) - F(3)$	1.907(5)	$Xe-F_3$	1.953	1.953			1.951	1.949			
$Xe(1) - F(4)$	1.918(5)	$Xe-F_4$	1.971	1.953			1.951	1.949			
$Xe(1) - F(5)$	1.912(5)	$Xe-F_5$	1.949	1.952			1.951	1.949			
$Xe(1) - F(6)$	1.913(5)	$Xe-F_6$	1.976	1.956			1.951	1.949			
$Xe(1)\cdots O(1A)$	3.983(6)	$Xe \cdots O_1$	2.872	3.829							
			Bond Angles (deg)								
$O(1)-Os(1)-O(2)$	102.0(3)	$O_1 - Os - O_2$	102.7	102.5	102.4	102.2					
$O(1)-Os(1)-O(3)$	102.1(3)	$O_1 - Os - O_3$	102.7	102.4	102.4	102.2					
$O(1) - Os(1)$ ---F(1)	85.3(2)	O_1 – O s--- F_1	82.2	83.8	82.9	83.0					
$O(1) - Os(1) - F(2)$	157.4(3)	$O_1 - Os - F_2$	152.9	155.1	152.8	154.2					
$O(1) - Os(1) -- F(1A)$	85.3(2)	O_1 – O s--- F_1'	83.8	83.8	82.9	83.0					
$O(2) - Os(1) - O(3)$	105.1(3)	$O_2 - Os - O_3$	105.6	105.3	105.3	105.2					
$O(2)$ – $Os(1)$ ---F(1)	159.8(2)	$O_2-O_5---F_1$	162.6	159.8	160.7	160.3					
$O(2)-Os(1)-F(2)$	91.8(3)	$O2-Os-F2$	94.5	92.5	93.9	93.4					
$O(2)$ - $Os(1)$ --- $F(1A)$	91.5(2)	O_2 – O s---F ₁	93.7	92.2	91.4	92.1					
$O(3)$ - $Os(1)$ --- $F(1)$	91.5(3)	$O_3-Os--F_1$	89.3	91.8	91.4	92.1					
$O(3)-Os(1)-F(2)$	91.2(3)	$O_3 - O_5 - F_2$	92.4	92.5	93.9	93.4					
$O(3)$ - $Os(1)$ --- $F(1A)$	159.8(2)	$O_3-Os--F_1'$	157.4	159.4	160.7	160.3					
$F(1)$ ---Os (1) - $F(2)$	76.1(2)	F_1 -Os- F_2	75.6	75.8	75.0	75.8					
$F(1)$ ---Os (1) --- $F(1A)$	70.2(2)	F_1 –Os--- F_1	70.0	69.2	70.7	69.5					
$F(2)$ - Os(1)--- $F(1A)$	76.5(2)	F_2 –Os--- F_1'	74.2	75.7	75.0	75.8					
$Os(1)$ ---F(1)---Os(1A)	109(1)	$Os---F_1---Os'$ $F_2 \cdots Xe \cdots O_1'$	110.0 55.4	110.8 45.4	109.3	110.5					
$F(2) \cdots Xe(1) \cdots O(1A)$	43.2(1) 82.2(2)	$F_2 \cdots Xe-F_3$	105.7	97.2							
$F(2)\cdots Xe(1) - F(3)$ $F(2) \cdots Xe(1) - F(4)$	96.4(2)	$F_2 \cdots Xe-F_4$	69.9	78.3							
$F(2) \cdots Xe(1) - F(5)$	93.8(2)	$F_2 \cdots Xe-F_5$	70.4	85.3							
$F(2) \cdots Xe(1) - F(6)$	83.8(2)	$F_2 \cdots Xe-F_6$	105.6	90.1							
$F(2) \cdots Xe(1) - O(4)$	171.6(2)	$F_2 \cdots Xe-O_4$	154.6	170.3							
$O(4)-Xe(1)-F(3)$	90.8(3)	$O_4 - Xe - F_3$	92.5	92.2			92.6	92.6			
$O(4)-Xe(1)-F(4)$	90.6(3)	$O_4 - Xe - F_4$	91.8	92.3			92.6	92.6			
$O(4)-Xe(1)-F(5)$	90.8(3)	$O_4 - Xe - F_5$	92.7	92.4			92.6	92.6			
$O(4)-Xe(1)-F(6)$	91.5(3)	$O_4 - Xe - F_6$	91.9	92.3			92.6	92.6			
$O(4) - Xe(1) \cdots O(1A)$	128.5(2)	$O_4 - Xe \cdots O_1$	149.9	142.7							
$F(3)-Xe(1)-F(4)$	178.6(2)	$F_3 - Xe - F_4$	175.6	175.5			180	174.8			
$F(3)-Xe(1)-F(5)$	90.0(2)	$F_3 - Xe - F_5$	89.3	90.0			89.9	89.9			
$F(3)-Xe(1)-F(6)$	89.0(2)	$F_3 - Xe-F_6$	89.5	90.1			89.9	89.9			
$F(3)-Xe(1)\cdots O(1A)$	55.6(2)	$F_3 - Xe \cdots O_1$	68.3	65.6							
$F(4)-Xe(1)-F(5)$	90.1(2)	$F_4 - Xe - F_5$	89.3	89.9			89.9	89.9			
$F(4)-Xe(1)-F(6)$	90.9(2)	$F_4 - Xe - F_6$	91.6	89.7			89.9	89.9			
$F(4)-Xe(1)\cdots O(1A)$	123.3(2)	$F_4 - Xe \cdots O_1$	108.2	110.5							
$F(5)-Xe(1)-F(6)$	177.5(2)	$F_5 - Xe - F_6$	175.3	175.4			180	174.8			
$F(5)-Xe(1)\cdots O(1A)$	122.7(2)	$F_5 - Xe \cdots O_1$	109.3	116.0							
$F(6)-Xe(1)\cdots O(1A)$	54.9(2)	$F_6 - Xe \cdots O_1$	66.0	60.0							
$Xe(1)\cdots F(2)-Os(1)$	163.2(2)	$Xe \cdots F_2$ –Os $Xe \cdots Q_1' - Qs'$	123.2 121.0	158.6 146.1							
$Xe(1)\cdots O(1A)-Os(1)$	142.6(3)										
" For the atom labeling scheme, see Figure 1a. " For the atom labeling scheme, see Figure 6b. " SDDall basis set augmented for F, O, and Xe with two											

d-type polarization functions by Huzinaga.^{40 *d*} Stuttgart basis set for Os augmented with one f-type polarization functional.⁴² aug-cc-pVTZ basis sets for all other atoms. *^e* aug-cc-pVTZ basis set.

[HF][SbF₆],¹¹ ReO₃F,¹² and ReO₃F(CH₃CN)₂·CH₃CN.¹³ The occurrence of the bridging fluorine atoms trans to oxygen atoms is also observed in $(OsO_3F_2)_{\infty}^3$ and other transition metal oxide fluorides, for example, μ -F(*cis*-OsO₂F₃)₂⁺,¹⁴

- (11) Gerken, M.; Dixon, D. A.; Schrobilgen, G. J. *Inorg. Chem.* **2002**, *41*, 259–277.
- (12) Supel, J.; Marx, R.; Seppelt, K. *Z. Anorg. Allg. Chem.* **2005**, *631*, 2979–2986.
- (13) Casteel, W. J.; Dixon, D. A.; LeBlond, N.; Lock, P. E.; Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.* **1999**, *38*, 2340–2358.
- (14) Casteel, W. J.; Dixon, D. A.; Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.* **1996**, *35*, 4310–4322.

polymeric MO₂F₃**·S**bF₅ (M = Tc, Re),¹⁵ μ -F(TcOF₄)₂⁺,¹⁶ μ -F($R \in \text{CF}$ ₆),⁺ 1⁷ μ -F(c is-ReQ-E₂),⁻ 13</sup> Re-Q-E₄,⁻ ¹³ (WOF), ¹⁸ $F(ReOF_4)_2^+$,¹⁷ μ -F(*cis*-ReO₂F₃)₂⁻,¹³ Re₃O₆F₁₀⁻,¹³ (WOF₄)₄,¹⁸ and $(MoOF₄)_∞$ ¹⁹ The *trans*-position of the bridging fluorine ligand is attributed to the *trans*-influence of the doubly bonded oxygen ligand which results from the inability of the fluorine ligand to compete as effectively as an oxygen ligand for the $d_{t_{2g}}$ orbitals of osmium.²⁰

⁽¹⁵⁾ LeBlond, N.; Dixon, D. A.; Schrobilgen, G. J. *Inorg. Chem.* **2000**, *39*, 2473–2487.

⁽¹⁶⁾ LeBlond, N.; Mercier, H. P. A.; Dixon, D. A.; Schrobilgen, G. J. *Inorg. Chem.* **2000**, *39*, 4494–4509.

Figure 1. (a) Structural unit in the X-ray crystal structure of $(OsO₃F₂)₂$ ²2XeOF₄ with thermal ellipsoids drawn at the 70% probability level. (b) Visualization of the octahedron formed by the light atoms of the $OsO₃F₃$ unit.

The Os-O bonds are equal to within $\pm 3\sigma$ and only the $Os(1)-O(2,3)$ bond lengths (1.685(6) Å) are within $\pm 3\sigma$ of those of the polymeric phase $(1.688(1)$ and $1.678(1)$ Å), whereas the $Os(1)-O(1)$ bond (1.703(6) Å) is significantly shorter than the terminal bond of $(OsO₃F₂)_∞$ (1.727(1) Å). The fluorine bridges have bond lengths that are equal within $\pm 3\sigma$ (Os(1)---F(1), 2.117(5) Å and Os(1)---F(1A), 2.107(4) Å) and are very similar to those observed for $(\text{OsO}_3\text{F}_2)_{\infty}$ $(2.126(1)$ and $2.108(1)$ Å).³ The remaining fluorine ligand, F(2), coordinates to Xe(1), forming a $Os(1)-F(2)\cdots Xe(1)$ bridge in which the $Xe(1) \cdots F(2)$ contact (2.757(5) Å) is significantly less than the sum of the van der Waals radii for F and Xe (3.63 Å) .⁸ The Os(1)-F(2) bond length $(1.927(5)$ Å) is longer than the terminal Os-F bond in the polymeric phase $(1.879(1)$ Å)³ but is significantly shorter than the Os---F bridge bonds in $(OsO₃F₂)₂$. The $Os(1)-F(2)$ bond length is, in fact, similar to those of the more polar Os-F bonds in the OsO₃F₃⁻ anion $(1.97(1)-1.91(1)$ Å),¹⁰
and is rendered more basic by the trans influence of the and is rendered more basic by the trans influence of the $Os(1)-O(1)$ bond.

The light atoms of $(SSO_3F_2)_2$ form a distorted octahedral coordination sphere about each osmium atom. Although there is significant variation in the bond lengths around the osmium atoms, the light atom octahedra are relatively undistorted (Figure 1b), as shown by the nearest neighborligand atom contacts.²¹ The $O(1)-Os(1)-F(2)$ angle $(157.4(3)°)$ is bent away from the Os(1)-O(2,3) double

- (18) Edwards, A. J.; Jones, G. R. *J. Chem. Soc. A* **1968**, 2074–2078.
- (19) Edwards, A. J.; Steventon, B. R. *J. Chem. Soc. A* **1968**, 2503–2510.
- (20) Casteel, W. J.; Dixon, D. A.; LeBlond, N.; Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.* **1998**, *37*, 340–353.

bond domain toward the less repulsive $Os(1)$ --- $F(1,1A)$ bridge bonds. The $F(1)$, $F(1A)$, $O(2)$, and $O(3)$ atoms are coplanar within ± 0.0001 Å, with the osmium atom lying 0.161 Å out of this plane, and displaced toward $O(1)$. The $O(2)-Os(1)-O(3)$ angle $(105.1(3)°)$ is considerably more open as a result of greater repulsion between the $Os-O$ double bond domains, whereas the $F(1)$ --- $Os(1)$ --- $F(1A)$ angle $(70.2(2)°)$ is considerably more closed because of weaker repulsions between the longer and more polar Os---F bridge bond domains. The F(1A), F(2), O(1), O(3) $[F(1), F(2), O(1), O(2)]$ atoms are coplanar within ± 0.02 $[\pm 0.02]$ Å, and the osmium atom is displaced 0.262 [0.265] Å out of this plane toward $O(2)$ [O(3)]. The displacement of the osmium atom occurs along the pseudo 3-fold axis toward the facial oxygen ligands, which is consistent with the metal atom displacements observed for $(OsO₃F₂)_{\infty}$,³ ReCl₃O₃²⁻,²² and OsO₃F₃⁻¹⁰ and for the cis -dioxo species cis -OsO₂F₄,²³ μ -F(cis -OsO₂F₃)₂⁺,¹⁴ cis - $\text{ReO}_2\text{F}_4^{-1.3}$ and *cis*-TcO₂ $\text{F}_4^{-2.0}$ In the latter cases, the central metal atom (M) is displaced toward the *cis-*oxygen ligands along the axis bisecting the $O-M-O$ angle.

The XeOF₄ molecule has been structurally well characterized by 19 F NMR,²⁴ photoelectron,²⁵ Raman,²⁶ and gas-phase microwave spectroscopy, $27-29$ and by single-crystal X-ray diffraction.³⁰ Xenon oxide tetrafluoride has been shown to have a square pyramidal geometry based on a $AX₄YE$ VSEPR arrangement, with an axial oxygen atom, four coplanar fluorine atoms in equatorial positions, and an axial valence electron lone pair. The long $F(2) \cdots Xe(1)$ contact in the present structure has no perceptible effect on the geometry of XeOF4 which retains its square-based pyramidal geometry, providing geometric parameters (Table 2) that are in good agreement with those reported previously.²⁸⁻³⁰ The only other crystal structure containing the $XeOF₄$ molecule is $[XeF_5][SbF_6]$ · $XeOF_4$ ³⁰ The xenon atom of the $XeOF_4$
molecule in this structure has a short $Xe \cdot \cdot \cdot$ E contact with a molecule in this structure has a short $Xe \cdots F$ contact with a fluorine atom of the SbF_6^- anion but has no contacts with the XeF_5 ⁺ cation. This fluorine bridge interaction also does not significantly distort the square-pyramidal geometry of the $XeOF₄$ molecule nor does it result in significant elongation of the Sb-F bridge bond. In the present structure, the

- (22) Lis, T. *Acta Crystallogr.* **1983**, *C39*, 961–962.
- (23) Christe, K. O.; Dixon, D. A.; Mack, H. G.; Oberhammer, H.; Pagelot, A.; Sanders, J. C. P.; Schrobilgen, G. J. *J. Am. Chem. Soc.* **1993**, *115*, 11279–11284.
- (24) Brown, T. H.; Whipple, E. B.; Verdier, P. H. *J. Chem. Phys.* **1963**, *38*, 3029–3030.
- (25) Brundle, C. R.; Jones, G. R. *J. Electron Spectrosc. Relat. Phenom.* **1973**, *1*, 403–407.
- (26) Tsao, P.; Cobb, C. C.; Claassen, H. H. *J. Chem. Phys.* **1971**, *54*, 5247.
- (27) Martins, J.; Wilson, E. B., Jr. *J. Chem. Phys.* **1964**, *41*, 570–571.
- (28) Martins, J. F.; Wilson, E. B., Jr. *J. Mol. Spectrosc.* **1968**, *26*, 410– 417.
- (29) Jacob, E. J.; Thompson, H. B.; Bartell, L. S. *J. Mol. Struct.* **1971**, *8*, 383–394.
- (30) Pointner, B. E.; Suontamo, R. J.; Schrobilgen, G. J. *Inorg. Chem.* **2006**, *45*, 1517–1534.

⁽¹⁷⁾ Schrobilgen, G. J.; Holloway, J. H.; Russell, D. R. *J. Chem. Soc., Dalton Trans.* **1984**, 1411–1415.

⁽²¹⁾ The interatomic distances for the light atoms forming the coordination spheres of the Os atoms in $(OsO_3F_2)_2$ ·2XeOF₄ are $O(1) \cdot O(2,3)$
2.634(9), 2.634(9) Å; $O(1) \cdot \cdot \cdot F(1,1A)$ 2.606(8), 2.600(7) Å; $O(2) \cdot \cdot O(3)$ 2.634(9), 2.634(9) Å; O(1)···F(1,1A) 2.606(8), 2.600(7) Å; O(2)···O(3) 2.674(8) Å; O(2)··· F(1A,2) 2.731(7), 2.599(9) Å; O(3)··· F(1,2) 2.740(8), 2.587(8) Å; and $F(1A) \cdots F(1,2)$ 2.428 (9), 2.501(7) Å.

Figure 2. Raman spectrum of $(OsO₃F₂)_∞$ recorded at -150 °C using 1064nm excitation; the symbols denote FEP sample tube lines (*) and an instrumental artifact (†).

Figure 3. Calculated B3LYP gas-phase geometry for $(\mu$ -FOsO₃F₂)₂OsO₃F⁻ (C_1) .

primary Xe-F bond lengths range between 1.907(5) and 1.918(5) Å and are equal within $\pm 3\sigma$. The O-Xe-F bond angles are in the range $90.6(3)$ to $91.5(3)$ ° and are equal within $\pm 3\sigma$, indicating that the repulsive effect of the oxygen double bond domain is comparable to that of the electron lone pair. This is consistent with the crystal structure of $[XeF₅][SbF₆]\cdot XeOF₄,³⁰$ as well as with gas-phase microwave
and electron diffraction studies of $XeOF₆$.²⁹ and electron diffraction studies of $XeOF_4$ ²⁹

Raman Spectroscopy. The low-temperature, solid-state Raman spectra of $(OsO₃F₂)_∞$, $(OsO₃F₂)₂$, and $(OsO₃F₂)₂$ $2XeOF_4$ are shown in Figures 2, 4, and 5, respectively. The observed and calculated frequencies and assignments for $(OsO₃F₂)_∞$ and for $(OsO₃F₂)₂$ and $(OsO₃F₂)₂$ ^o2XeOF₄ are listed in Tables 3 and 4, respectively, where the atom numbering schemes are given in Figures 3, 6a, and 6b, respectively. Spectral assignments for $(OsO₃F₂)₂$ and $(OsO₃F₂)₂$ ⁻²XeOF₄ were made by comparison with the calculated frequencies and Raman intensities (Table 4) for the energy-minimized gas-phase geometries of $(SSO_3F_2)_2$, XeOF₄, and $(SSO_3F_2)_2$ ²XeOF₄ and by comparison with the experimental frequencies of $XeOF₄²⁶$ (Table S2). The vibrational assignments for $(\text{OsO}_3\text{F}_2)_{\infty}$ were made by comparison with the calculated frequencies and assignments of the presently unknown $(\mu$ -FOsO₃F₂)₂OsO₃F⁻ anion (Table 3 and Table S3). The central $OsO₃F₃$ group of $(\mu$ -FOsO₃F₂)₂OsO₃F⁻ is comprised of two *cis*-bridged fluorine atoms, one terminal fluorine atom, and a *fac*-OsO₃ moiety,

Figure 4. Raman spectrum of (OsO_3F_2) recorded at -150 °C using 1064nm excitation; the symbols denote FEP sample tube lines (*) and an instrumental artifact (†).

Figure 5. Raman spectrum of $(OsO_3F_2)_{2}^{\bullet}2XeOF_4$ recorded at $-150^{\circ}C$ using 1064-nm excitation; the symbols denote FEP sample tube lines (*) and an instrumental artifact (†).

Figure 6. Calculated B3LYP gas-phase geometries for (a) $(OsO₃F₂)₂ (C_{2h})$ and (b) (OsO3F2)2·2XeOF4 (*Ci*).

providing a good approximation of the repeat unit in the fluorine-bridged polymer. Moreover, the formal charge of the

Synthesis and X-ray Crystal Structure of $(OsO₃F₂)₂$ *^{<i>2XeOF₄*}

Table 3. Raman Frequencies, Intensities, and Assignments for (OsO3F2)∞, and Calculated Vibrational Frequencies and Intensities for (*µ*-FOsO3F2)2OsO3F-

^a From ref 6. *^b* From ref 7. The abbreviations denote very strong (vs), medium (m), medium weak (mw), and weak (w) intensities. *^c* The Raman spectrum was recorded on a microcrystalline sample in a FEP tube at -150° C using 1064-nm excitation. The experimental Raman intensities given in parentheses are relative intensities with the most intense band given as 100. The abbreviation, n.o., denotes not observed. *^d* SVWN/SDDall. B3LYP/Stuttgart cc-pVTZ. Values in parentheses denote calculated Raman intensities (amu \AA^{-4}) and values in square brackets denote calculated infrared intensities (km mol⁻¹) Values in parentheses denote calculated Raman intensities (amu A^{-4}) and values in square brackets denote calculated infrared intensities (km mol⁻¹).

^e Assignments are for the energy-minimized geometry calculat unit are provided. See Table S3 for a complete set of assignments. See Figure 3 for the atom labeling scheme. The abbreviations denote stretch (*ν*), bend (δ), umbrella (δ _{umb}), twist (ρ _t), wag (ρ _w), and rock (ρ _r).

Table 4. Calculated and Experimental Vibrational Frequencies, Intensities, and Assignments for (OsO₃F₂₎₂ and (OsO₃F₂₎₂2XeOF₄ **Table 4.** Calculated and Experimental Vibrational Frequencies, Intensities, and Assignments for (OsO₃F₂₎₂ and (OsO3F₂)²2XeOF₄

 $\overline{ }$

^a The Raman spectrum was recorded on a microcrystalline solid sample in a FEP tube at -150 °C using 1064-nm excitation. Experimental Raman intensities are given in parentheses and are relative intensities with the mos calculated infrared intensities (km mol⁻¹⁾. ^{*e*} Assignments are for the energy-minimized geometry calculated at the B3LYP level. See Figure 6a for the atom labeling scheme of (OsO3F₂₎₂. See Figure 6b for the atom The Raman spectrum was recorded on a microcrystalline solid sample in a FEP tube at -150 °C using 1064-nm excitation. Experimental Raman intensities are given in parentheses and are relative intensities with the most intense band given as 100. The abbreviations denote shoulder (sh), broad (br), and not observed (n.o.). *<i>b* Bands were also observed at 276(sh), 280(sh), and 288(sh) cm⁻¹ but are unassigned. ^{*c*} Bands were also observed at 136(3), 274(7), 605(1), and 661(1) cm⁻¹ but are unassigned. ^{*d*} SVWN/SDDall. Values in parentheses denote calculated Raman intensities (amu Å⁻⁴) and values in square brackets denote labeling scheme of (OsO₃F₂):2XeOF₄. The abbreviations denote stretch (v), bend (b), twist (p_o), wag (p_o), rock (p_i), and umbrella (b_{umb}). The atoms F₃, E₄, E₃, E₄, F₃', F₃', E₄', F₃', E₄' a respectively. respectively.

Inorganic Chemistry, Vol. 48, No. 10, 2009 **4485**

anion is evenly dispersed over the light atoms (Table S4) and is not expected to have a significant effect on the vibrational frequencies of the central $OsO₃F₃$ group.

(a) $(OsO_3F_2)_{\infty}$ **. The infrared and Raman spectra of matrix**isolated $OsO₃F₂$ monomer^{4,5} and the Raman spectrum of the low-temperature polymeric phase, $(OsO₃F₂)_∞,^{6,7}$ have been previously reported.The vibrational bands of matrix-isolated $OsO₃F₂$ were fully assigned under D_{3h} symmetry and the ¹⁶O/¹⁸O isotopic shifts for the Os¹⁶O₃F₂, Os¹⁶O₂¹⁸OF₂, $Os^{16}O_2F_2$, and $Os^{18}O_3F_2$ isotopomers were used to calculate the principal and the interaction force constants and to confirm the vibrational assignments.⁵ Two prior vibrational studies of $(OsO₃F₂)_∞^{6,7}$ are at considerable variance with each other and with the present study (Table 3). The Raman spectrum of $(OsO₃F₂)_∞$ has been reexamined in the present study, providing frequencies and intensities that were reproducible over multiple preparations of $(OsO₃F₂)_{\infty}$ using different synthetic procedures (see ref 3 and eqs 3 and 5). In addition, more precise descriptions and assignments of the vibrational modes, based on the calculated vibrational frequencies and atomic displacements for $(\mu$ -FOsO₃F₂)₂OsO₃F⁻, are also reported. The SVWN and B3LYP frequencies (Table 3) agree well with each other and for the purpose of this discussion, the B3LYP frequencies are explicitly referred to in the subsequent discussion.

Four well-resolved bands occur at 945, 949, 952, and 957 cm^{-1} in the $\text{(OsO}_3\text{F}_2)_{\infty}$ spectrum that are assigned to coupled Os_b-O stretching modes. The calculated frequencies associated with the central $OsO₃F₃$ unit of the $(\mu$ -FOs $O₃F₂)₂OsO₃F$ anion (977, 992, 994, and 1014 cm^{-1}) are overestimated with respect to those of $(OsO₃F₂)_{\infty}$ but well reproduce the experimental trend. The Os-O stretching frequencies are overestimated by similar amounts for the benchmark, *cis*- $OsO₂F₄$ (Table S5).

The infinite chain $OsO₃F₂$ polymer contains two fluorine environments, a terminal (F_t) and a bridging (F_b) environment. The Os_b-F_t stretching bands (596 and 610 cm⁻¹) are
weak and are in good agreement with the coupled Os_c-F weak and are in good agreement with the coupled Os_b-F_t stretching modes calculated for $(\mu$ -FOsO₃F₂)₂OsO₃F⁻ (598 and 614 cm⁻¹). The stretching bands involving $Os_b - F_{b(1,2)}$
(404 and 413 cm⁻¹) are also weak, but their frequencies are $(404$ and 413 cm⁻¹) are also weak, but their frequencies are not modeled as well by $(\mu$ -FOsO₃F₂)₂OsO₃F⁻, with the predicted values occurring at much higher frequencies (443 and 471 cm⁻¹, respectively). As anticipated, the Os_b-F_t
stretching modes occur at higher frequencies than those stretching modes occur at higher frequencies than those involving $Os_b-F_{b(1,2)}$, in accord with the shorter bond length of $Os_b-F_t (1.879(1)$ Å) relative to that of $Os_b-F_b (2.126(1))$ \AA).³

A limited number of the calculated bending modes (146, 214, 234, 398, 401, and 405 cm^{-1}) are exclusively associated with the central $OsO₃F₃$ unit and have been explicitly assigned, that is, the bands at 389, 394, and 398 cm^{-1} can be reliably associated with $O - Os_b - O$ bending modes. Detailed descriptions were not attempted for the remaining bending modes because the central $OsO₃F₃$ and terminal $OsO₃F₂$ units are extensively coupled. Because $(OsO₃F₂)_{\infty}$ does not have significant contributions from terminal groups, the highly coupled bending modes of the central $OsO₃F₃$ and terminal $OsO₃F₂$ units in $(\mu$ -FOs $O₃F₂)₂OsO₃F⁻$ are inappropriate models for the bending modes in $(OsO₃F₂)_∞$.

(b) $(\text{OsO}_3\text{F}_2)_2$ and $(\text{OsO}_3\text{F}_2)_2$ **·2XeOF₄.** Under C_1 symmetry, all vibrational modes (30 A for $(OsO₃F₂)₂$ and 66 A for $(OsO₃F₂)₂2XeOF₄)$ are predicted to be both infrared- and Raman-active. Although correlation of the gas-phase adduct symmetry (C_i) to the crystal site symmetry (C_1) results in no additional band splittings, correlation of the site symmetry to the centrosymmetric unit cell symmetry $(C_i \text{ with } Z = 1)$ results in equal apportioning of the vibrational modes between A_g and A_u symmetries (Table S6). Thus, 33 of the 66 A modes of $(OsO₃F₂)₂2XeOF₄$ are Raman-active A_g modes and 33 are infrared-active Au modes under the unit cell symmetry. In accord with the factor-group analysis, 37 vibrational bands were observed in the Raman spectrum. The calculated frequencies at the SVWN and B3LYP levels are in good agreement with each other. The degree of coupling between the $(OsO₃F₂)₂$ and XeOF₄ modes varies with the level of theory, with stronger coupling occurring at the SVWN level. The predominant components in the mode descriptions, however, are the same at both levels and are therefore used as the basis for discussion. The differences arise because the Xe atom of the $XeOF_4$ molecule is coordinated to $F(2)/F_2$ of $(OsO_3F_2)_2$ in both the experimental and B3LYP geometries, while the Xe atom is coordinated to both $F(2)/F_2$ and $O(1A)/O_1'$ of $(OsO_3F_2)_2$ in the SVWN geometry (see Calculated Geometries). Because the B3LYP geometry better reproduces the experimental geometry, the B3LYP frequencies and corresponding mode descriptions are referred to in the following discussion.

The Os-O stretching frequencies of $(OsO₃F₂)₂$ and $(OsO₃F₂)₂2XeOF₄$ (Table 4) are comparable to those of $(OsO₃F₂)_∞$. The Os-O stretching modes of $(OsO₃F₂)₂$ ^{*} $2XeOF_4$ are not coupled to any of the $XeOF_4$ modes and are only slightly shifted to higher frequency relative to those of $(OsO₃F₂)₂$.

The $Os-F(2,2')$ and $Xe-F(2,2')$ stretching modes of the fluorine bridge are coupled, giving rise to two modes, $(\lceil \nu(\text{OsF}_2) - \nu(\text{Os}'\text{F}_2') \rceil + \lceil \nu(\text{Xe}'\text{F}_2') - \nu(\text{Xe}'\text{F}_2) \rceil)$ and $(\lbrack \nu(OSF_2) + \nu(Os'F_2') \rbrack - \lbrack \nu(Xe'F_2') + \nu(XeF_2) \rbrack)$. Only the latter mode is observed at 572 cm^{-1} as a strong band, which is in good agreement with the calculated frequency (571 cm-¹) and strong intensity. The frequency of this mode is shifted to lower frequency when compared with that of the $[\nu(\text{OsF}_2) + \nu(\text{Os}'\text{F}_2')]$ mode in $(\text{OsO}_3\text{F}_2)_2$, observed at 604 cm^{-1} as a broad, low-intensity band. The experimental frequency difference upon going from the dimer to the adduct (32 cm^{-1}) is in reasonable agreement with the calculated shift (45 cm^{-1}) . A similar shift (38 cm^{-1}) was calculated for the modes involving $[\nu(\text{OsF}_2) - \nu(\text{Os}'\text{F}_2')]$.

In contrast, and as expected, all stretching mode descriptions and frequencies that involve $Os-F(1,1')$ are nearly identical for both $(SSO_3F_2)_2$ and $(SSO_3F_2)_2$ ² $XeOF_4$. The inphase mode, $[\nu(\text{OsF}_1) + \nu(\text{Os}'\text{F}_1) + \nu(\text{Os}'\text{F}_1') + \nu(\text{OsF}_1')]$, appears as a weak band at 453 and 450 cm^{-1} , respectively.

Synthesis and X-ray Crystal Structure of $(OsO₃F₂)₂$ *^{<i>2XeOF₄*}

The out-of-phase mode, $[\nu(\text{OsF}_1) + \nu(\text{Os}'\text{F}_1')] - [\nu(\text{Os}'\text{F}_1)]$ $+$ $\nu(SF_1')$], is significantly coupled with bending modes, giving rise to bands at 376 and 409 cm^{-1} for the dimer and at 379 and 409 cm^{-1} for the adduct. The frequency at 409 cm^{-1} is in very good agreement with the Os_b-F_b frequencies of $(OsO₃F₂)_{\infty}$ (404, 413 cm⁻¹).

Most of the O - Os - O , F - Os - O , and F - Os - F bending modes are not coupled or are very weakly coupled to the ^F-Xe-F and F-Xe-O bending modes of the $(OsO₃F₂)₂•2XeOF₄ adduct and are generally in very good$ agreement with the calculated values, as well as with the experimental and calculated values for $(OsO₃F₂)₂$ and $(OsO₃F₂)_∞$.

The $XeOF_4$ molecules adducted to $(OsO_3F_2)_2$ are rendered non-equivalent because the *Ci* site symmetry of the adduct results in lowering of the free molecule symmetry from C_{4v} to local C_1 symmetry and removal of the degeneracies of the E vibrational modes. In addition, all XeOF₄ vibrational modes are coupled to each other but, for the most part, do not exhibit significant coupling with the $(OsO₃F₂)₂$ modes, except in the case noted above.

Both the symmetric (921 cm^{-1}) and asymmetric (911 cm^{-1}) cm⁻¹) Xe-O stretching modes of $(OSO_3F_2)_2$ ²2XeOF₄ occurs
at higher frequencies than the calculated values (890 and at higher frequencies than the calculated values (890 and 890 cm⁻¹, respectively, Table 4). The Xe-O stretching
modes are shifted to lower frequency than that of the modes are shifted to lower frequency than that of the experimental and calculated gas-phase $XeOF_4$ molecule²⁶ $(927 \text{ and } 928 \text{ cm}^{-1}, \text{ respectively}, \text{Table S2}), \text{ in accordance}$ with coordination of the Lewis acidic XeOF₄ molecule.

Computational Results. The geometries of $(OsO₃F₂)₂$ and $(OsO₃F₂)₂•2XeOF₄$ (Figure 6) optimized under $C₂$ and C_i symmetries, respectively, and resulted in stationary points with all frequencies real. The starting geometries for both energy minimizations were the crystallographic geometries. Although $(OsO₃F₂)₂$ optimized to C_{2h} symmetry, the geometry is very close to *Ci* symmetry, which is reflected in the atom labeling scheme used in Figure 6a. The energyminimized geometries and vibrational frequencies of the benchmarks, $XeOF_4$ (C_{4v}) and *cis*-OsO₂F₄ (C_{2v}) (Tables S2 and S5, respectively) were also calculated. The geometry of the XeOF4 molecule has been energy minimized using the SVWN/SDDall and B3LYP/aug-cc-pVTZ methods and provides geometrical parameters and frequencies that are similar to the experimental values of $XeOF₄²⁶$ and $(OsO₃F₂)₂·2XeOF₄.$

The energy-minimized geometry of the presently unknown $(\mu$ -FOsO₃F₂)₂OsO₃F⁻ anion was obtained for *C*₁ symmetry (Table S7), resulting in a stationary point with all frequencies real. Descriptions of the vibrational modes are provided in Table S3. The vibrational modes and frequencies of the (*µ*- $FOSO₃F₂)₂OsO₃F⁻$ anion were used to aid the vibrational assignments of the infinite-chain polymer, $(OsO₃F₂)_∞$. The central $OsO₃F₃$ group of the anion provided a satisfactory model for the $OsO₃F₃$ group of the polymer. Moreover, the formal negative charge of the anion is essentially equally distributed among all of the electronegative light atoms (see Table S4) so that the formal negative charge may be expected to have a minimal effect on the geometrical parameters and vibrational frequencies associated with the $OsO₃F₃$ group.

(a) Calculated Geometries. (i) (OsO3F2)2 and $(OsO₃F₂)₂$ **•2XeOF₄**. The energy-minimized geometries calculated at the SVWN/SDDall (Figure S2) and B3LYP/ Stuttgart(Os) aug-cc-pVTZ (Xe, O, F) levels (Figure 6b) for $(OsO₃F₂)₂•2XeOF₄$ only differ by the relative positions of the XeOF₄ molecules in relation to the $(SSO_3F_2)_2$ dimer, with the B3LYP geometry more closely reproducing the experimental interaction between $(OsO₃F₂)₂$ and XeOF₄. The experimental (2.757(5) Å) and SVWN (2.735 Å) $Xe \cdots F_2$ bond lengths are in close agreement, whereas the B3LYP bond length is slightly longer (2.968 Å). In contrast, the B3LYP (3.829 Å) and SVWN (2.872 Å) $Xe \cdots O_1'$ contact distances are both shorter than the experimental distance $(3.983(6)$ Å). The Xe atom of the XeOF₄ molecule is nearly equidistant from O_1' and F_2 at the SVWN level, whereas it is much closer to $F(2)/F_2$ for the experimental and B3LYP geometries. The $Xe \cdots F(2)/F_2$ -Os bond angles for the experimental $(163.2(2)°)$, B3LYP $(158.6°)$, and SVWN (123.2°) geometries also reflect the shorter $Xe \cdots F(2)/F_2$ distance.

The calculated $(OsO₃F₂)₂$ and $(OsO₃F₂)₂$ ²2XeOF₄ geometries are in good agreement with the experimental geometry of the dimer unit in $(OsO_3F_2)_2$ ² $XeOF_4$, although the Os-O bond lengths are slightly overestimated in the calculated structures. Both calculated structures provide good estimates for the Os--- F_1 bond lengths whereas the calculated Os- F_2 bond length of $(OsO₃F₂)₂$ is underestimated when compared with the experimental and calculated values for $(OsO₃F₂)₂•2XeOF₄$. This is likely attributable to the significant interaction that occurs between F_2 and Xe in $(OsO₃F₂)₂•2XeOF₄$. The Os-O₁ and Os'-O₁' bond lengths of $(OsO₃F₂)₂•2XeOF₄ calculated at the SVM level (1.721)$ Å) are longer than the B3LYP (1.688 Å) and experimental $(1.703(6)$ Å) values because of the much shorter $O_{1,1}$ ' \cdots Xe(') contacts in the SVWN geometry. The absence of an interaction between O_1 and Xe in the experimental structure is also consistent with the similar calculated and experimental $Os-O_1$ bond lengths found for $(OsO_3F_2)_2$.

In both the calculated and experimental structures of $(OsO₃F₂)₂$ and $(OsO₃F₂)₂$ \cdot 2XeOF₄, the light atoms of the $(OsO₃F₂)₂$ dimer lie in two dihedral planes; one composed of atoms O_2 , O_3 , O_8 , F_1 , F_1' , O_8' , O_2' , O_3' , and the other composed of atoms F_2 , O s, O_1 , O_1' , O s', F_2' . In the case of the O_1-Os-F_2 and $O_1' - Os' - F_2'$ bond angles, both are bent toward the fluorine bridge atoms, F_1 and F_1' (Figure 6).

The shorter $O_{1,1}$ ' \cdots Xe(') bond length obtained for the SVWN geometry results in a $O_4 - Xe \cdots F_2$ bond angle that is more closed than in the B3LYP and experimental geometries $(154.6, 170.3,$ and $171.6(2)^\circ$, respectively). In both the SVWN and B3LYP geometries, the $O_4 - Xe \cdots O_1'$ bond angle is calculated to be larger than in the experimental structure (149.9, 142.7, and $128.5(2)^\circ$, respectively), with the difference likely due to crystal packing. In the geometry calculated at the SVWN level, the Xe atom is essentially equidistant from the F_2 atom and the O_1' atom, while in the

B3LYP geometry, the Xe atom lies along a line coincident with the $Os-F_2$ bond that has no significant interaction with O1′, in agreement with the crystal structure. In both calculated structures, the $Xe-F$ and $Xe-O$ bond lengths of the $XeOF_4$ molecule are slightly overestimated and the angle formed between O_4 and the plane defined by the F_3 , F_4 , F_5 , F_6 atoms is also slightly overestimated.

(ii) $(\mu$ -FOsO₃F₂)₂OsO₃F⁻. The structure of the $(\mu$ - $FOSO_3F_2$)₂OsO₃F⁻ anion, optimized at the B3LYP (Figure 3) and SVWN (values in square brackets) levels (Table S7), has both terminal $OsO₃F₂$ units orientated so that the $Os_1-F_{b1}-Os_b-F_{b2}-Os_2$ backbone forms a shallow Wshaped arrangement. The $Os_1--F_{b1}--Os_b$ (144.7 [129.8]) and Os₂---F_{b2}---Os_b (144.4° [128.8]) bridge bond angles are bent away from each other, as a result, \angle Os₁Os_bOs₂ is significantly greater than 90° (106.5° [116.4]).

The Os_1--F_{b1} and Os_2--F_{b2} bridge bond lengths of the terminal $OsO₃F₃$ units (av., 2.194 Å) are elongated with respect to the terminal $Os_{(1,2)}$ -F bond lengths (av., 1.922) Å). The bridging $Os_{b}--F_{b1}$ and $Os_{b}--F_{b2}$ bond lengths (av., 2.072 Å) and the terminal Os_b-F_t bond (1.904 Å) are shorter than the respective bridging $Os_{1,2}--F_b$ and terminal $Os_{1,2}-F_{1,2,4,5}$ bond lengths. In contrast with the experimental Os-O bond lengths of $(OsO₃F₂)_∞$ (1.727(1), 1.688(1), and 1.678(1) Å),³ the calculated $Os_b-O_{(t,t1,t2)}$ bond lengths of (μ - $FOSO₃F₂)₂OsO₃F⁻$ are nearly equal and are not significantly influenced by the *trans*-fluorine ligands. It is noteworthy that the *trans*-influence on the Os-O bond lengths is observed for the experimental structure of $(SSO_3F_2)_2$ ² $XeOF_4$ but was not apparent in the calculated structures of $(OsO₃F₂)₂$ and $(OsO₃F₂)₂·2XeOF₄.$

(b) Charges, Valencies, and Bond Orders. The Natural Bond Orbital $(NBO)^{31-34}$ analyses were carried out for the SVWN- and B3LYP-optimized gas-phase geometries of $(OsO₃F₂)₂$ and $(OsO₃F₂)₂$ \cdot ₂ \times \cdot eOF₄ and are similar (Table S8). Because the B3LYP geometry better reproduces the experimental geometry than the SVWN geometry (see Calculated Geometries), only the B3LYP results are referred to in the ensuing discussion.

The NBO analyses give natural charges of 2.19 and 2.18 for Os in $(OsO_3F_2)_2$ and $(OsO_3F_2)_2$ ² $XeOF_4$, respectively, and 3.13 for Xe in $(OsO₃F₂)₂$ \cdot 2XeOF₄. The natural charge of the Xe atom is approximately half of its formal oxidation number, and the oxygen and fluorine atoms are also close to half of their respective formal oxidation numbers, indicating that the bonding in $(OsO_3F_2)_2$ and $(OsO_3F_2)_2$ ² $XeOF_4$ is, as expected, polar covalent. The $Os--F₁$ bridge bond order $(0.23, 0.23)$ is approximately half that of the terminal $Os-F_2$ bond (0.43, 0.40) for both $(OsO₃F₂)₂$ and $(OsO₃F₂)₂·2XeOF₄$, respectively, which is consistent with equivalent bonding of the F_1 bridging fluorine atom to both osmium atoms.

With the exception of F_2 , the Os-O and Os-F bond orders of $(OsO₃F₂)₂$ and $(OsO₃F₂)₂$ ^{*•*}2XeOF₄ are comparable. The $Os-F_2$ bond order for $(OsO₃F₂)₂·2XeOF₄$ (0.40) is slightly lower when compared with that of $(SSO_3F_2)_2$ (0.43) and is attributable to coordination of $F₂$ to the Xe atom of $XeOF_4$. The $Xe\cdots F_2$ bond order corresponding to this weak fluorine bridge interaction is only 0.04.

Conclusions

The $(OsO₃F₂)₂2XeOF₄$ adduct has been synthesized by reaction of $(OsO₃F₂)_{\infty}$ with XeOF₄ solvent and is composed of the doubly fluorine bridged $(OsO₃F₂)₂$ dimer and two XeOF4 molecules which interact with the terminal fluorine ligands of the dimer by means of fluorine bridges between the $Xe(VI)$ and $Os(VIII)$ atoms. The $XeOF₄$ molecule retains its square pyramidal geometry, and the primary coordination spheres of the osmium atoms are fac -OsO₃F₃ arrangements in which the oxygen ligands are cis to one another and the bridging fluorine atoms are trans to an oxygen ligand. The adduct is stable at room temperature for up to 5 h, slowly dissociating to $(OsO₃F₂)_{\infty}$ and XeOF₄. The $(OsO₃F₂)_{2}$ dimer has been isolated by removal of XeOF₄ from $(OsO₃F₂)₂$ ^{*} 2XeOF4 under dynamic vacuum and represents a new lowtemperature phase of $OsO₃F₂$. Upon standing at 25 °C, the dimer undergoes an irreversible phase transition to the α phase of $(OsO₃F₂)_∞$, a polymeric chain structure. The vibrational modes and the Raman spectrum of $(OsO₃F₂)_∞$ have been assigned in detail with the aid of quantumchemical calculations of the presently unknown trinuclear $(\mu$ -FOsO₃F₂)₂OsO₃F⁻ anion. Because the negative formal charge was found to be essentially uniformly dispersed over all the light atoms, the vibrational modes of the central $OsO₃F₃$ moiety of this anion proved to be a good model for the assignment of the vibrational modes of the $OsO₃F₃$ moieties in the infinite chain polymer, $(SSO_3F_2)_{\infty}$.

Experimental Section

Apparatus and Materials. Manipulations involving air-sensitive materials were carried out under anhydrous conditions as previously described.¹⁴ All preparative work was carried out in fluoroplastic vessels fabricated from $\frac{1}{4}$ -in. o.d. lengths of FEP tubing. The tubing was heat-sealed at one end and connected through a 45° SAE flare to a Kel-F valve. Reaction vessels were dried on a glass vacuum line and then transferred to a metal vacuum line where they were passivated with F_2 for several hours, refilled with dry N_2 , and stored in a drybox until used. Vessels were connected to vacuum lines through ¹ /4-in. 316 stainless steel Swagelok Ultratorr unions fitted with Viton O-rings. Xenon oxide tetrafluoride was synthesized by hydrolysis of XeF₆ as previously described³⁵ and $(OsO₃F₂)_{\infty}$ was synthesized by reaction of $OsO₄$ (Koch-Light, 99.9%) with ClF₃ as previously described.³

Syntheses of $(OsO_3F_2)_2$ **²XeOF₄ and** $(OsO_3F_2)_2$ **.** Inside a nitrogen-filled drybox, a fluorine passivated FEP reaction vessel

⁽³¹⁾ Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. *NBO*, Version 3.1; Gaussian Inc.: Pittsburgh, PA, 1990.

⁽³²⁾ Reed, A. E.; Curtiss, L. A.; Weinhold, F. *Chem. Re*V **¹⁹⁹⁸**, *⁸⁸*, 899– 926.

⁽³³⁾ Reed, A. E.; Weinstock, R. B.; Weinhold, F. *J. Chem. Phys.* **1985**, *83*, 735–746.

⁽³⁴⁾ Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, C. M.; Morales, C. M.; Weinhold, F. *NBO Version 5.0*; Theoretical Chemical Institute, University of Wisconsin: Madison, WI, 2001.

⁽³⁵⁾ Schumacher, G. A.; Schrobilgen, G. J. *Inorg. Chem.* **1984**, *23*, 2923– 2929.

Synthesis and X-ray Crystal Structure of $(OsO₃F₂)₂·2XeOF₄$

was loaded with 0.02803 g (0.1015 mmol) of orange $(OsO₃F₂)_∞$. The reaction vessel was then transferred to a metal vacuum line and about 1.0 g (4.5 mmol) of $XeOF₄$ was distilled into it. Upon warming to room temperature, an orange suspension formed which slowly dissolved, with agitation, over a period of several hours to form a deep orange solution. The reaction vessel was attached to a metal vacuum line through a FEP U-trap cooled to -196 °C and excess XeOF4 was removed under dynamic vacuum at 0 °C. Pumping for about $2^{1/2}$ min yielded an orange solid that was identified as $(OsO₃F₂)₂·2XeOF₄ (0.04931 g, 0.04936 mmol) by$ Raman spectroscopy. Associated $XeOF_4$ was removed from the adduct by further pumping on the solid at 0° C for 3 h, producing a yellow powder identified as $\left(\frac{OsO_3F_2}{2}\right)$ (0.02720 g, 0.04924 mmol) by Raman spectroscopy. The dimer underwent a phase transition to $(OsO₃F₂)_∞$ when warmed to and maintained at room temperature for $1\frac{1}{2}$ h, whereas the Raman spectrum of the XeOF₄ adduct showed no change when the sample was held at room temperature for up to 5 h. Slow dissociation of $XeOF₄$ and rearrangement of $(OsO₃F₂)₂$ to $(OsO₃F₂)_{\infty}$ was, however, detected upon further standing at room temperature and was complete after 21 days.

Raman Spectroscopy. The low-temperature Raman spectra of $(OsO₃F₂)_∞, (OsO₃F₂)₂·2XeOF₄, XeOF₄, and (OsO₃F₂)₂ (-150 °C)$ were recorded on a Bruker RFS 100 FT Raman spectrometer using 1064-nm excitation and a resolution of 1 cm⁻¹ as previously described.¹⁰ The spectrum was recorded using a laser power of 300 mW and a total of 1200 scans for $(OsO₃F₂)_∞$, $(OsO₃F₂)₂$ ²2XeOF₄, and XeOF₄ and 2400 scans for $(OsO₃F₂)₂$. **Nuclear Magnetic Resonance Spectroscopy. (a) NMR Sample Preparation.** In a typical synthesis, a sample of $(OsO₃F₂)₂$ ²2XeOF₄ was prepared in a 4-mm o.d. FEP tube fitted with a Kel-F valve that had been loaded with $(OsO₃F₂)_{\infty}$ (23.24) mg, 0.08314 mmol) inside a drybox. The NMR tube was connected to a FEP vacuum submanifold that was, in turn, connected to a XeOF4 storage vessel. The FEP submanifold was connected to a metal vacuum line, and about 0.5 mL of XeOF₄ was statically distilled onto $(OsO_3F_2)_{\infty}$ at -196 °C. The NMR sample was then heat sealed under dynamic vacuum and stored at -196 °C until its $19F$ NMR spectrum could be recorded. Samples were dissolved at room temperature just prior to data acquisition. When obtaining spectra, the 4-mm FEP tubes were inserted into a 5-mm o.d. thinwall precision glass NMR tube (Wilmad).

(b) NMR Instrumentation and Spectral Acquisitions. Fluorine-19 NMR spectra were recorded unlocked (field drift <0.1 Hz h-¹) on a Bruker DRX-500 spectrometer equipped with an 11.744 T cryomagnet using a 5 mm combination $\rm{^1H/^{19}F}$ probe operating at 470.592 MHz. The NMR probe was cooled using a nitrogen flow and variable-temperature controller (BVT 3000).

The 19F NMR spectra were acquired in 32 K memories with spectral width settings of 37.5 kHz and acquisition times of 0.87 s, and were zero-filled to 64 K, yielding data point resolutions of 0.57 Hz/data point. Relaxation delays of 0.1 s were applied and 2500 transients were accumulated. The pulse width, corresponding to a bulk magnetization tip angle of approximately 90°, was 8.5 *µ*s. Line broadenings of 0.1 Hz were used in the exponential multiplications of the free induction decays prior to Fourier transformation. The ¹⁹F spectra were referenced externally at 30 $^{\circ}$ C to samples of neat CFCl3. The chemical shift convention used is that a positive (negative) sign indicates a chemical shift to high (low) frequency of the reference compound.

X-ray Crystal Structure Determination of $(OsO₃F₂)₂$ **²XeOF₄**. (a) Crystal Growth. Crystals of $(OsO₃F₂)₂$ ² $XeOF₄$ were obtained from a sample composed of 0.0502 g (0.182 mmol) of $OsO₃F₂$ dissolved in excess XeOF4 (ca. 0.500 g, 2.24 mmol) and contained

in a $\frac{1}{4}$ -in. o.d. FEP T-shaped reactor. The sample vessel was placed in a near-horizontal position, distributing the $XeOF₄$ solution along the length of the reaction vessel. Slow cooling of the solution to 0 °C over 3 h resulted in the growth of light orange needles while the supernatant remained deep orange in color. Crystals were isolated by decanting the solvent at -5 °C under dry nitrogen into the side arm of the FEP vessel, which was immersed in liquid nitrogen, followed by drying of the crystalline product under dynamic vacuum at -20 °C before the side arm containing the supernatant was removed by heat sealing off this portion of the reaction vessel under dynamic vacuum at -196 °C.

(b) Collection and Reduction of X-ray Data. A crystal of $(OsO₃F₂)₂2XeOF₄$ having the dimensions $0.17 \times 0.04 \times 0.03$ mm³ was selected at -105 ± 3 °C for low-temperature X-ray structure determination and was mounted in a cold stream $(-173 \degree C)$ on a goniometer head as previously described.¹⁰

The crystal was centered on a Bruker SMART APEX II diffractometer, equipped with an APEX II 4K CCD area detector and a triple-axis goniometer, controlled by the APEX2 Graphical User Interface (GUI) software,³⁶ and a sealed source emitting graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Diffraction data collection at -173 °C consisted of a full φ rotation at a fixed $\chi = 54.74^{\circ}$ with 0.36° (1010) frames, followed by a series of short (250 frames) ω scans at various φ settings to fill the gaps. The crystal-to-detector distance was 4.953 cm and the data collection was carried out in a 512 \times 512 pixel mode using 2 \times 2 pixel binning. Processing of the raw data was completed by using the APEX2 GUI software,³⁶ which applied Lorentz and polarization corrections to three-dimensionally integrated diffraction spots. The program SADABS³⁷ was used for the scaling of diffraction data, the application of a decay correction, and an empirical absorption correction on the basis of the intensity ratios of redundant reflections.

(c) Solution and Refinement of the Structure. The XPREP program was used to confirm the unit cell dimensions and the crystal lattice. The solution was obtained by direct methods which located the positions of the atoms defining the $(SSO_3F_2)_2$ dimer and the XeOF4 molecules. The final refinement was obtained by introducing anisotropic thermal parameters and the recommended weightings for all of the atoms. The maximum electron densities in the final difference Fourier map were located near the heavy atoms. All calculations were performed using the SHELXTL-plus package for the structure determination and solution refinement and for the molecular graphics.³⁸ Further confirmation of the choice of space group was obtained by use of PLATON with the WinGX software package.³⁹

Computational Methods. The optimized geometries and frequencies of $OsO₃F₂$, *cis*-OsO₂F₄, XeOF₄, (OsO₃F₂)₂, (OsO₃F₂)₂ $2XeOF_4$, and $(\mu$ -FOsO₃F₂)₂OsO₃F⁻ were calculated at the density functional theory (DFT) level by use of SVWN and $B3LYP^{40}$ methods. The Stuttgart semirelativistic large core and effective core pseudopotential basis sets (SDDall) augmented for F, O, and Xe with two d-type polarization functions by Huzinaga⁴¹ was used for

-
- (40) Frisch, M. J. et al. *Gaussian 03*, revision B.04; Gaussian, Inc.: Pittsburgh, PA, 2003.
- (41) Huzinaga, S.; Andzelm, J.; Kolobukowski, M.; Radzio-Andzelm, E.; Sakai, Y.; Tatewaki, H. *Gaussian Basis Sets for Molecular Calculations*; Physical Science Data 16; Elsevier: Amsterdam, 1984.

⁽³⁶⁾ *APEX2*, Release 2.0-2; Bruker AXS Inc.: Madison, WI, 2005.

⁽³⁷⁾ Sheldrick, G. M. *SADABS (Siemens Area Detector Absorption Corrections)*, version 2.10; Siemens Analytical X-ray Instruments Inc: Madison, WI, 2004.

⁽³⁸⁾ Sheldrick, G. M., *SHELXTL-Plus, release 6.14, Siemens Analytical X-ray Instruments, Inc*; Madison, WI, 2000-2003. (39) Farrugia, L. J. *J. Appl. Crystallogr.* **1999**, *32*, 837–838.

the SVWN method and the Stuttgart basis set augmented by one f-type polarization function (α_f Os 0.886)⁴² for osmium and augcc-pVTZ basis sets for xenon, oxygen, and fluorine was used for the B3LYP method.

Pseudopotentials were used with the appropriate basis sets for both osmium and xenon. Quantum-chemical calculations were carried out using the programs Gaussian 98 and Gaussian 03.⁴³ The levels and basis sets were benchmarked by calculating *cis*- $OsO₂F₄$ and $XeOF₄$ and comparing with the experimental geometries and vibrational frequencies. $23,29,30$ The geometries were fully optimized using analytical gradient methods. After optimization at one level of theory, the geometries were calculated at the other level of theory to ensure an equivalent energy-minimized geometry had been achieved. The vibrational frequencies were calculated at the SVWN and B3LYP levels using the appropriate minimized structure, and the vibrational mode descriptions were assigned with the aid of Gaussview.⁴⁴

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada for the award of a postgraduate scholarship (M.J.H.) and for support in the form of a Discovery Grant (G.J.S.); and SHARCNet (Shared Hierarchical Academic Research Computing Network; www.sharcnet.ca) for computational resources.

Supporting Information Available: Raman spectra used to monitor the formation/dissociation of $(OsO₃F₂)²XeOF₄$ from/to $(OsO₃F₂)_∞$ and XeOF₄, and the transition of $(OsO₃F₂)₂$ to $(OsO₃F₂)_∞$ (Table S1); view of the $(OsO₃F₂)₂2XeOF₄ crystallographic unit cell$ along the *a*-axis. (Figure S1); experimental Raman frequencies, intensities, and assignments for gas-phase XeOF₄, and the calculated vibrational frequencies and intensities for $XeOF₄$ (Table S2); calculated vibrational frequencies, Raman and infrared intensities and assignments for $(\mu$ -FOsO₃F₂)₂OsO₃F⁻ (Table S3); natural bond orbital (NBO) charges, valencies, and bond orders for (*µ*- $FOsO₃F₂$)₂OsO₃F⁻ (Table S4); experimental and calculated frequencies, intensities and assignments for *cis*-OsO2F4 (Table S5); factorgroup analysis for $(OsO₃F₂)₂·2XeOF₄$ (Table S6); calculated geometrical parameters for $(\mu$ -FOsO₃F₂)₂OsO₃F⁻ (Table S7); calculated gas-phase geometry for $(OsO₃F₂)₂$ ⁺2XeOF₄ ($C₁$, SVWN/ SDDall) (Figure S2); natural bond orbital (NBO) charges, valencies, and bond orders for $(OsO₃F₂)₂$ and $(OsO₃F₂)₂$ ²2XeOF₄ (Table S8); complete references 40 and 43; and a X-ray crystallographic file in CIF format for the structure determination of $(\text{OsO}_3\text{F}_2)_2$ ² CeOF_4 . This material is available free of charge via the Internet at http://pubs.acs.org.

IC900242M

⁽⁴²⁾ Ehlers, A. W.; Bohme, M.; Dapprich, S.; Gobbi, A.; Hollwarth, A.; Jonas, V.; Kohler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. *Chem. Phys. Lett.* **1993**, *208*, 111–114.

⁽⁴³⁾ Frisch, M. J. et al. *Gaussian 98*, Revision A.11; Gaussian, Inc.: Pittsburgh, PA, 2003.

⁽⁴⁴⁾ *GaussView*, release 3.0; Gaussian Inc.: Pittsburgh, PA, 2003.